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Abstract

A new general non-isothermal rheological model of metal alloys in the thixoforming processes has been derived. The

model uses the two-phase approach to flow description with two momentum conservation equations buckled by

common pressure and interface drag force. The thixotropy phenomena occurring in the globular structure of the alloy,

is modelled by means of an extra kinetic equation describing agglomeration degree. The non-isothermal processes are

governed by the thermal energy conservation equation coupled with a temperature–enthalpy and solid fraction rela-

tionship. The time evolution of the solid fraction is described by the mass conservation equation for the solid phase with

a source term based on the Sheil equation. The mathematical model has been implemented in an original efficient finite

element algorithm, which is tested against very well known benchmark problems as well as used in a real 3-D simulation

of a thixoforming process.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The semi-solid metal (SSM) processing is a new

technology for near net-shape production of engineering

components, in which metal alloys are processed in the

temperature range where the liquid and solid phases

coexist [1,2]. The semi-solid slurry with a non-dendritic

microstructure exhibits a distinct rheological behaviour,

namely, thixotropy and pseudo-plasticity [3]. These

rheological properties make the SSM processing the

unique and effective process for near net-shape product

and property enhancement particularly desired in the

automobile industry.

With a considerable increase of interest in metal

forming using the thixoforming technology during the

last years, there is a strong demand for a universal tool

for modelling such processes. There is a need for prod-

ucts made of light metal alloys with a high content of

aluminium or magnesium. For instance, the automobile
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industry produces fuel injection systems, steering ele-

ments and wheels free of shortcomings usually encoun-

tered in traditionally produced casts. The technique of

the thixoforming offers better mechanical properties,

particularly endurance proof, then precisely filled com-

plicated geometrical casts and energy saving owing to

smaller temperature range of the whole process.

Materials cast in the semi-solid state exhibit specific

rheological properties like thixotropy and pseudo-plas-

ticity between solidus and liquidus temperatures. The

constitutive behaviour of semi-solid alloys is very com-

plex, depending on solid fraction, morphology of the

solid phase and thermomechanical history. Although

many models are presented in the literature on thixo-

forming, there is still a need for an adequate model

accounting for all of the specific phenomena that taking

place during that process. Many of them referred to the

thixotropic behaviour only, where metals were treated

as homogeneous materials [4], the others took into ac-

count two-phase flow, but neglected the thixotropy

[5]. While the thixotropy is considered, the model

using the agglomeration/dis-agglomeration mechanisms

are known [6] based on the definition of a structural

parameter. Some more sophisticated models of Alex-

androu et al. [7,8], neglect however, the heat transfer

during the process. Alexandrou et al. [9] implemented
ed.
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Nomenclature

cP specific heat

Cls interfacial resistance coefficient

dp particle diameter

D the deformation rate tensor

erfð. . .Þ Gauss error function

f fraction

g gravity

h enthalpy

k consistency coefficient (rheological parame-

ter)

ks solidification constant (Stefan formulation)

kp partition coefficient

L latent heat

m power law index (rheological parameter)

ne equilibrium power law index (rheological

parameter)

n normal unit vector

NI basic function corresponding to node I , in
the finite element method

p pressure

q interface friction force

S extra stress tensor

t time

T temperature

u velocity vector

WI weight function

x; y; z coordinates

Greek symbols

a upwinding parameter

g non-Newtonian viscosity

j structural parameter

k thermal conductivity

ki Lame coefficient

q density
_cc shear rate

Subscripts

B bulk flow

c cold surface

e equilibrium

EQ equivalent

in initial

l liquid phase

M metal

ref reference

s solid phase

Y yield

Superscript

n time step
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the heat transfer and phase change together with

thixotropic behaviour into the commercial simulation

package, but did not take into account the phase seg-

regation. Similar approach has been done by Im et al.

[10] where the authors investigated extensively such

phenomena like the mould filling quality, residual flow

and the influence of the natural convection on the

solidification process. Models also appeared, in which

the mushy region was assumed either to behave like a

semi-solid slurry at low solid fractions or a porous

medium at high solid fractions [11–13].

It should be emphasized that the thixoforming tech-

nology differs essentially from classical methods of metal

forming in the way of preparing the material before the

actual process. As mentioned above the thixoforming

processes operate between the solidus–liquidus temper-

atures, and the temperature determines the solid fraction

in the formed material. Thus it is essential for the quality

of the final product to have the exact temperature set-

ting. The heat transfer taking place in the process for a

metal alloy is accompanied by the segregation of the

chemical constitution coupled with phase-change kinet-

ics, diffusive draining of liquid from the interface front

and the convective mixing.
One of the most important issues while dealing with

solidification/melting problems is proper determination

of the interface position in time. From the numerical

stability point of view, the problem with adequate lib-

eration of latent heat is easier to overcome in case when

the phase change takes place over a range of tempera-

tures. The issue is in the case of isothermal phase change

due to abrupt change of enthalpy. The specific heat

experiences the Dirac delta behaviour and an infinitely

narrow distance occurs within which the latent heat is

liberated. There are essentially two methods for model-

ling the solidification process, first by use of front

tracking on a moving mesh and the other on the fixed-

grid. The first one offers better opportunity for accurate

front location but can be applied only to simple prob-

lems. Since the method involves a moving boundary

condition their application is restricted rather to one-

dimensional problems or when the interface is distinctly

defined. In the other method the evolution of latent heat

is accounted for enthalpy determination and whole cal-

culations are carried out on a fixed space grid. The en-

thalpy, capacitance, fictitious heat flow and temperature

recovery techniques can be distinguished among fixed-

grid methods.
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The most popular from that group is so-called

effective heat capacity method. It depends on the

evaluation of the gradient dh=dT on the solidification

front and can be applied both to the Stefan problems

(metals freezing isothermally) and a finite freezing

range (mushy zone) of solidification. In the first case,

however, there is a need for introducing a small

freezing interval. As the result there is a possibility to

miss the corresponding front position in space, at

which the phase is changing when using too big time

step or too large grid size of the computational mesh.

There is another risk with the method of direct evalu-

ation of the effective heat capacity connected with its

step-like behaviour in the neighbourhood of a freezing

front. Some numerical oscillations can appear in the

case of iterative solution methods and some averaging

techniques must be employed to deal with such prob-

lems. Dalhuijsen and Segal [14] recommended the Del

Giudice’s method, in which the effective heat capacity

equation is referred to the orientated direction of the

temperature gradient or particularly the Lemmon’s

method, in which this direction is defined as a normal

to the phase change front. The use of the space

derivatives of enthalpy and temperature in the effective

heat capacity equation ensures that the phase change is

likely to be spotted. Although they used the enthalpy

gradient in the formulation of the problem, they used

specific heat in the thermal energy equation formula-

tion. The authors also recommended using of the mass

lumping in order to avoid the numerical oscillations.

Sharma et al. [15] proposed another variant of modi-

fied specific heat method for calculating the latent heat

liberation during solidification of binary alloys. The

authors used either the equilibrium relationship or the

Sheil equation for determining the rate of the phase

change. Occasionally the latter has been incorrectly

named as a non-equilibrium approach, despite the fact

that still the process was assumed to proceed along the

equilibrium curves on the phase diagram with a dif-

ferential rate. Yoon et al. [4] also considered in their

paper the equivalent specific heat method. Although

the model was supposed to be suitable for semi-solid

alloys, the material has been modelled as a single phase

only, which is a major drawback of the work.

Different variants of the general enthalpy approach

for determining the heat transfer during the phase-

change process have been invented. Swaminathan and

Voller [16] have been elaborated the one of the most

known variant. In their method the evolution of the

latent heat is accounted for by a temperature–enthalpy

relationship, which in principle is suitable for alloys

and mixtures [17,18]. Since the discontinuity of the

enthalpy function is one of the main problems in this

method, the inverse function of enthalpy often is used

in order to eliminate the step change of enthalpy in

case of isothermal solidification [16,19]. In order to
avoid the oscillation of the numerical solution and to

imitate more precisely the physical reality of the pro-

cess, Kim and Anghaie [20] proposed an effective

conduction length model introduced to the conven-

tional enthalpy method. They assumed, that the heat

flux across the boundary of the phase-change cell could

be calculated on the basis of the distance between the

real interface and the nodal point of neighbouring cell

instead of the distance between neighbouring cells. The

authors applied their method to one-dimensional Ste-

fan problems and recommended the use of it rather to

such cases only.

Swaminathan and Voller [16] proposed well-known

step-change enthalpy–temperature relationship in case

of pure metals, but their relationship for alloy systems

had so many constants, that its universal use is ques-

tionable. Particularly time-consuming iterations are

necessary for adjustment of non-linear enthalpy–tem-

perature relationship. Basu and Sekhar [21] proposed

the model for solidification when both aligned and

equiaxed dendrites are forming. They assumed a linear

liquid fraction–temperature relationship in the mushy

region, expressed in terms of the linearized Sheil equa-

tion, which however, is not valid for alloys of lower

solute contents.

Various numerical methods have been applied in

solving solidification problems like volume of fluid

[10], finite difference [22,23], and the finite element

[4,16,24].

In the present study an own model of solidification is

proposed and examined in a broader context of the

thixoforming processes in conjunction with the finite

element method. It involves not only thermal issues, but

also complex rheological properties of alloys in the semi-

solid state. A new variant of the general enthalpy

method has been implemented into a general finite ele-

ment algorithm, in which enthalpy, temperature and the

solid fraction are solved simultaneously, thus evading

from time consuming iterations typical for adjustments

of the mentioned enthalpy–temperature relationships.

The thermal energy conservation equation using

explicitly the enthalpy as independent variable, is cou-

pled with a mass conservation equation for the solid

phase. The latter involves a source/sink term accounting

for the rate of the phase change based on the Sheil

relationship. The thermal changes are reflected in the

rheological equation of state, which influences the flow

of each phase. Verification of the model is made on the

basis of solutions and experimental results available in

the literature. These are analytical solution of the Stefan

problem solidification [25,26] and the solidification of

the pure metal data published by Gau and Viskanta [27].

A more sophisticated geometry––a real engineering

die––was also analysed in terms of assessing the oper-

ating conditions for the thixoforming process with such

a die.
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2. Mathematical model

2.1. Continuity and momentum conservation equations

The mass conservation equation for the bulk flow of

an incompressible fluid (particularly two-phase system)

is:

r � u ¼ 0 ð1Þ

The velocity u is defined as the weighted sum of the

velocities of individual phases factored by the corre-

sponding fractions of solid fs and liquid fl

u ¼ fsus þ flul ð2Þ

fs þ fl ¼ 1 ð3Þ

Particularly a useful relationship can be derived from

Eqs. (2) and (3) (to be used later in this text)

u� ul ¼ fsðus � ulÞ ð4Þ

The bulk flow is governed by the general momentum

conservation equation in the classical form

q
Du
Dt

¼ �rp þr � S þ qg ð5Þ

q ¼ fsqs þ ð1� fsÞql is the density of the alloy, p the

isotropic pressure and S the extra stress tensor, by which

the alloy is modelled as an incompressible non-Newto-

nian fluid

S ¼ 2gBD ¼ gBðruþrTuÞ ð6Þ

with a non-Newtonian shear dependent viscosity as a

function of the solid fraction fs and the state of an

internal thixotropic structure variable j

gB ¼ SYðfsÞ
_cc

�
þ kðfsÞ _ccmðfsÞ�1

�
� jþ g0 ð7Þ

where

g0 ¼ glð1þ 2:5fs þ 14:1f 2
s Þ ð8Þ

is a hypothetical suspension of completely disagglo-

merated particles when j ¼ 0.

The general shear rate is defined as

_cc ¼
ffiffiffiffiffiffiffiffiffi
2IID

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SpðD2Þ

q
> 0

using the second invariant of the deformation rate ten-

sor D. The other parameters in the formula (7): SYðfsÞ,
kðfsÞ and mðfsÞ are the yield stress, consistency and flow

index functions of the solid fraction, respectively. The

detailed form of these functions was given elsewhere

[28].

Then, for the liquid phase, the momentum conser-

vation equation has the following form:
qlfl
Dul
Dt

¼ �flrp þr � ðflSl
Þ þ rðflklr � ulÞ

þ qlflg þ q ð9Þ

where

S
l
¼ 2glDl

¼ glðrul þrTulÞ ð10Þ

ql is the liquid density, p the isotropic pressure and S
l
the

extra stress tensors for the liquid phase flow, gl is con-
stant that is usually in the range of 0.02–0.025 Pa s,

which means a Newtonian fluid. Since there is a differ-

ence in the phase mobility, and particularly possibility

for the phase segregation, the liquid phase is modelled as

effectively compressible with the divergence operator for

liquid velocity not necessarily equal to zero.

r � ul 6¼ 0

This justifies the occurrence of the third term on the

RHS of Eq. (9) describing this effective compressibility,

with the Lame’ coefficient ki expressed as a function of

the Poisson ratio m.

ki ¼ gi
2m

1� 2m
; m ¼ 0; 5f 2

i ; i ¼ s; l

Interface friction force is proportional to the ‘‘slip’’

velocity difference (see also Eq. (4)):

q ¼ Clsðus � ulÞ ¼
Cls

fs
ðu� ulÞ ð11Þ

In the case of high solid fraction i.e. in the range of

about 0.5 or higher, which may occur locally due to the

phase segregation, the resistance Cls is large and large

adverse pressure gradient must be set up to balance the

resistance. In this case Eq. (9) reduces effectively to the

Darcy law:

Clsðus � ulÞ ¼ flrp ð12Þ

Cls is in this regime closely related to the permeability

coefficient of the solid phase, which can be described by

applying the Carman-Kozeny capillary model. In this

model the pores of the solid medium are compared to a

system of identical parallel capillaries. The appropriate

relationship can be found in the literature [29]

Cls ¼
90glf

2
s

f 2
l d2

p

ð13Þ

and is assumed to be fulfilled for fs P fcr. This critical

value fcr should be taken from a range 0.4–0.5. On the

other hand, the interphase drag in the opposite regime of

low solid fraction is assumed to be described by an

appropriate form resulting from the Stokes law. It was

derived in the following form

Cls ¼
18glfs
d2
p

ð14Þ

and is assumed to be fulfilled for fs < fcr.
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2.2. Thixotropy kinetical equation

The technical thixoforming is a highly time-depen-

dent process and steady states are never reached. Hence

a thixotropic model is important for the simulation of

the material flow. Here a thixotropic model is derived on

the basis of Moore classical approach [30] with a

structural parameter j, characterizing the degree of

agglomeration, which generally depends on the shear

rate history. The general equation of state, as given ex-

plicitely before by Eq. (7), has a general form

g ¼ gð _cc; j; fsÞ ð15Þ

The kinetics of the structural parameter (thixotropy

kinetical equation) is postulated by the following dif-

ferential equation:

Dj
Dt

¼ cð _ccsÞ � ðje � jÞ ð16Þ

As evident from the above equation, any evolution of

the structural changes tends to reach an equilibrium

described by so-called equilibrium structural

je ¼
S0 þ k � _ccnes
S0 þ k� � _ccms

ð17Þ

which, however, as a function of the shear rate may

change in any flow process.

2.3. Temperature–enthalpy relationships

The thermal energy conservation equation is used

here in the following form

Dh
Dt

¼ r � ðkrT Þ þ gB _cc
2 ð18Þ

It is assumed that there exists a unique relationship

between enthalpy and temperature

hðT Þ ¼ fs

Z T

Tref

csqsdT þ ð1� fsÞ
Z T

Tref

clqldT þ ð1� fsÞqL

ð19Þ

q ¼ fsqs þ ð1� fsÞql

For constant specific heats Eq. (19) can be split into

following temperature–enthalpy formulae

h ¼ csqsðT � TrefÞ for T < Ts ð19aÞ

h ¼ hs þ cPqðT � TsÞ þ qð1� fsÞL for hs < h < hl

ð19bÞ

where hs ¼ csqsðTs � TrefÞ and hl ¼ hs þ clqlðTl � TsÞþ
qlL
h ¼ hs þ clqlðTl � TsÞ þ qlLþ clqlðT � TlÞ
¼ hl þ clqlðT � TlÞ for T > Tl ð19cÞ

The above relationships (19a–c) can be thus presented

in a concise linear form

A1T þ A2hþ A3fs ¼ b ð20Þ

where

A1 ¼
csqs for h < hs
cPq for hs < h < hl
clql for hl < h

8<
: ð21Þ

for melts A2 ¼ �1 and for pure metals

A2 ¼
�1 for h < hs
0 for hs < h < hl
�1 for hl < h

8<
: ð22Þ

b ¼
csqsTref for h < hs
cPqTs � hs � qð1� fsÞL for hs < h < hl
clqlTl � hl for hl < h

8<
:

The solid fraction is determined entirely by enthalpy for

pure metals

fs ¼ 1� h� hs
L

ð23Þ

but can be an independent variable for melts in the

‘‘mushy state’’. It is assumed that the kinetic equation

for the solid fraction evolution is governed by the mass

conservation equation for the solid phase

ofs
ot

þr � ðfsusÞ ¼
d~ffs
dT

DT
Dt

ð24Þ

in which the right-hand side describes the rate of phase

change. It is assumed that the phase change is governed

by the equilibrium regime described by the Sheil equa-

tion

~ffs ¼ 1� TM � TL
TM � T

� � 1
1�kp

ð25Þ

Hence the derivative on the right hand side is obtained

d~ffs
dT

¼ � 1

ð1� kpÞðTM � TLÞ
TM � TL
TM � T

� �2�kp
1�kp

ð26Þ
3. Numerical algorithm

The numerical algorithm implemented here is based

on the fixed-grid methods, in which the interface posi-

tion is generally at an unknown a priori location be-

tween nodes. However in many popular algorithms,

particularly adopted in very well known commercial

software like FIDAPe or FLUENTe, the latent-heat
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evolution is treated in terms of an equivalent specific

heat or equivalently phase change source term.

The idea behind such an approach was to substitute

relationship (19a–c) for enthalpy into the thermal energy

equation (18) giving for constant density and specific

heats

qcP
DT
Dt

¼ r � ðkrT Þ þ gB _cc
2 þ qL

Dfs
Dt

ð27Þ

with the phase change source term on the right hand

side. If a relationship between the solid fraction and

temperature is specified then Eq. (27) is transformed to

qcEQ
DT
Dt

¼ r � ðkrT Þ þ gB _cc
2 ð28Þ

where the equivalent specific heat is

cEQ ¼ cP � L
dfs
dT

ð29Þ

Rather than specifying a specific heat function, which

includes a latent heat jump, an alternative approach is to

evaluate the effective specific heat directly from the en-

thalpy h. For example, the following formula has been

used [14] to compute the required specific heat at a point

by

cP ¼ rh � rh
rT � rT

� �1
2

This expression is computed by first determining the

enthalpy at the nodes of the element using the provided

enthalpy–temperature curve. As this method incorpo-

rates the local distribution of the enthalpy within an

element it is able to track the solidification front more

accurately than calculated from (29). The drawback is

that if the time step is large enough, the proper amount

of latent heat will not be released resulting in a faster

than desired temperature change.

In most known numerical algorithms Eq. (18) is

solved iteratively together with enthalpy–temperature

relationship, particularly for melts where the relation-

ship has been sometimes rather cumbersome [16]. This

also resulted in a considerable CPU time consumption

increase, which is particularly critical issue for solving

3-D problems.

In contrast to previous numerical implementations of

the temperature–enthalpy relationships, the use of semi-

linear form of Eqs. (abc) has been made when using the

solid fraction as an independent variable for melts in the

‘‘mushy state’’. Such an approach has the theoretical

background [31]. For the case of pure metals the solid

fraction is entirely determined by enthalpy as stated

above in Eq. (23) while for melts an evolution equation

is derived on the basis of the mass conservation with a

source term resulting from the Sheil relationship as in

Eq. (25). Thus the system to be solved simultaneously in
the time stepping process of the numerical algorithm

designed here is as follows:

Anþ1 � Xnþ1 ¼ An � Xn þ B ð30Þ

where

Xnþ1 ¼
Tnþ1

hnþ1

fnþ1
s

2
4

3
5 Xn ¼

Tn

hn

fns

2
4

3
5 ð31Þ

with the coefficient matrices and free term vector as

follows:

Anþ1 ¼
DtK Mþ DtC 0

A1M A2M A3M

� d~ffs
dT M 0 ð1þ DtvÞMþ DtC

2
4

3
5

ð32Þ

An ¼
0 M 0
0 0 0

� d~ffs
dT M 0 M

2
4

3
5 B ¼

DþG

b

0

2
4

3
5 ð33Þ

The detailed formulae resulting from the finite element

discretization for the above matrices are given below,

where NI ;NJ , I ; J ¼ 1; . . . ;NP are the interpolation basis

(shape) functions associated with nodal points of a

mesh, NP equal to the number of all nodal points, while

WI , I ¼ 1; . . . ;NP are the weight functions resulting

from the Petrov–Galerkin approach. The latter has

been used here to improve the numerical stability,

which presents a problem in convection dominated sit-

uations.

MIJ ¼
Z
X
NINJ dX; KIJ ¼

Z
X
krNI � rNJ dX;

CIJ ¼
Z
X
WIv � rNJ dX ð34Þ

WI ¼ NI þ
ad
2juj v � rNI ; a ¼ cothðPg=2Þ � 2=Pg;

Pg ¼ jujd
a

¼ jujd cpq
k

ð35Þ

DI ¼
Z
X
NIl _cc

2 dX; GI ¼
Z
C
NIkrT � ndC ð36Þ

As mentioned above, since in the case of pure metals the

solid fraction is entirely determined by enthalpy, there is

no need for solving independent solid fraction, and the

problem described by Eq. (31) can be reduced consid-

erably. In such case the variables to be actually solved

are only temperature and enthalpy, thus

Xnþ1 ¼ Tnþ1

hnþ1

� �
Xn ¼ Tn

hn

� �

with the coefficient matrices and free term vector as

follows:
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Anþ1 ¼
DtK Mþ DtC

A1M A2M

� �
An ¼

0 M

0 0

� �

B ¼
DþG

b

� �

The latter case has been found a considerable interest in

literature recently. Much less attention has been taken to

the melts, which is particularly interesting in context of

the thixoforming. The approach presented here making

use of solid fraction as an independent variable in the

‘‘mushy state’’ is free of rather cumbersome attempts to

define temperature–enthalpy relationship in form of a

complicated formulae to fit experimental data. In our

case the relationship appears naturally after solving

simultaneously the system (30)–(33). The lumping tech-

niques for temperature–enthalpy–solid fraction rela-

tionship (19a–c) have been used consistently which

resulted in an improved stability algorithm and allowed

for reducing the CPU time.
0T n∇ ⋅ = 0T n∇ ⋅ =

1585inT =

0T n∇ ⋅ =

0h =

20T =

0T n∇ ⋅ =

0T n∇ ⋅ =

Fig. 1. Initial and boundary conditions for the Stefan problem

(the steel solidification) and the mesh used for the numerical

modelling.
4. Numerical tests

The following numerical tests have been performed

for verification of the model and for investigating the

rate of convergence of the algorithm.

4.1. Test 1. The Stefan problem––steel solidification

In this test a verification of the model was made by

comparison the simulation results with the Stefan–

Neumann analytical solution of the one-dimensional

solidification problem by conduction. The solidification

process takes place in constant temperature and metal

properties of both phases are constant and independent

of the temperature. Exact specification can be found in

literature [25,26]. The functions describing the temper-

ature distribution in solid and liquid part of the mould

for the Stefan problem are as follows:

Tsx ¼ Tc þ ðTm � TcÞ
erf xs

2
ffiffiffiffiffi
as �t

p
� �

erf ks
2
ffiffiffi
as

p
� � ð37Þ

Tlx ¼ Tin � ðTin � TmÞ
erfc xl

2
ffiffiffiffiffi
al �t

p
� �

erfc ks
2
ffiffiffi
al

p
� � ð38Þ

where Tsx, Tlx––temperature of the solid and liquid cast

part, respectively, Tc––temperature of the cast surface

(constant along the process), Tin––initial temperature of

the liquid metal, Tm––melting temperature, x––coordi-
nate in the direction of solidification front moving, t––
time, ks––solidification constant, erfð. . .Þ–the Gauss

error function, a–coefficient of temperature compensa-

tion for solid and liquid cast layer, respectively:
as ¼
ks

cs � qs

; al ¼
kl

cl � ql

with k–thermal conductivity. In order to solve Eqs. (37)

and (38) the solidification constant ks should be first

calculated on the basis of Eq. (39).

bsðTm � TcÞ
erf ks

2
ffiffiffi
as

p
� � exp

�
� ks2

4as

�
� blðTin � TmÞ

erfc ks
2
ffiffiffi
al

p
� � exp

�
� ks2

4al

�

¼
ffiffiffi
p

p

2
qs � Ls � ks ð39Þ

where b is the coefficient of heat accumulation for solid

and liquid cast part, respectively:

bs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kscsqs

p
; bl ¼

ffiffiffiffiffiffiffiffiffiffiffi
klclql

p
:

Having calculated solidification constant from Eq. (39),

the temperature of solid and liquid part can be obtained

either from Eqs. (37) or (38).

Although the problem itself is in fact unidirectional

but, for the simulation purpose, an equivalent three-

dimensional problem has been designed thus enabling a

consistent use of the same 3-D code as in more complex

real industrial problems. Thus a steel solidification in a

cavity of dimensions 40 · 1· 1 cm was analysed as de-

picted in Fig. 1 together with boundary conditions

where T is temperature, and h––enthalpy. The mesh,

also presented in Fig. 1, had at different variants total

number of nodes 4025, 2025 and 1025 and the total

number of elements of 15,360, 7680 and 3840 respec-

tively. This corresponded to the longest edge of the

cavity divisions of 160, 80 and 40 respectively.
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The two methods mentioned above of solving the

solidification problems were used: the well-known

equivalent specific heat method and the present original

variant of the enthalpy method. The analytical solution

was compared with the simulation results for both

methods, and the result of comparison is shown in

Figs. 2 and 3 respectively. The advantage of the new

method in terms o accuracy at approximate the same

time consumption is obvious. Owing to better numer-

ical stability, the time step for the new method could be

increased without a risk of missing the phase-change

front. The total CPU time was 4414 s for time step 0.1,

1160 s for time step 0.2 and 599 s with time step 2.0

respectively when using an Intel Pentium 4, 1.8 GHz

processor.

The algorithm convergence was checked by using the

three mentioned meshes with element dimension coeffi-

cient reduced by a factor of 2. The Sobolev norm kek0 of
the numerical error e was calculated for any time instant

and for different finite element discretization of the

computational domain on the basis of the following

formula:

kek0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b� a

Z b

a
htheorðxÞ � hnumðxÞ½ �2dx

s
ð40Þ

where htheorðxÞ and hnumðxÞ are values of the theoretic

and numerical solution at a point x, respectively, a, b––
beginning and ending of the computational domain

along the x-axis.
Fig. 4 presents the error Sobolev norm error as the

function of the three characterizing mesh dimensions in
the logarithmic plot, calculated at different time instants

during simulation run. Simultaneously with mesh divi-

sion increase, the time step was reduced by the same

factor due to the requirement of the error estimation and

stability analysis for Lagrange–Galerkin methods. It can

be noticed that the error decreases with the mesh

refinement, although the most distinctly for the roughest

grid (with 40 divisions). The further mesh refinement

does not bring significant correction in respect to the

numerical error. The conclusion is that the present

model has another advantage of reduced sensitivity to

mesh refinement and even a relatively crude mesh can be

used without loss of accuracy, resulting in reduced CPU

time consumption.

4.2. Test 2. The solidification problem of the alloy in the

temperature range

The same geometry and meshes as in the Test 1 were

used to simulate the material solidification in a range of

temperature. Solidification conditions and thermophys-

ical properties of the Al–4.5%Cu alloy were imposed

according to data taken from the literature [16]. The

temperature range of freezing was between 548 and 646

�C. The enthalpy–temperature relationship for alloys

melting in a range of temperatures is not trivial as

mentioned before. Some types of such a relationship for

different materials are shown in Fig. 5. Particularly, the

curve c is characteristic for metals and alloys freezing in

the range of temperature. Fig. 6 presents the Al–Cu

example obtained entirely on the basis of numerical re-

sults and the mathematical model proves the ability of
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reflecting the characteristic feature of the enthalpy curve

without any reference to empirical data as in fact prac-

ticed previously [16].
4.3. Test 3. The melting problem of the solid gallium

The next numerical test used a very well known

benchmark problem initiated in the work by Gau and

Viskanta [27] concerning melting and solidification of

gallium and quoted in the literature very often

[17,18,26,32,33]. This particular metal was chosen be-

cause of its favourable properties, including a low

melting temperature. Unfortunately, the conduction

coefficient of gallium is anisotropic, what can cause

some problems during simulation. Authors noticed, that

although they manage to obtain reproducible results of

their experiments in case of melting process, their

solidification results were not repeatable, thus the results

cannot be trusted unconditionally. It is the natural

convection driven problem, thus representing a crucial

task for simulation. Originally, the computational do-

main was a rectangle cavity of the main dimensions of

8.89· 6.35 cm. As in previous tests the computational

domain was extended to the third dimension along the

z-axis in the own simulations and presented in Fig. 7

together with initial and boundary conditions. The mesh

was analogical to the one shown in Fig. 1, consisting as

before of the tetrahedral elements, with the main divi-

sions 30 · 25 · 1. The velocity field and the melting front

movement at different three time instants are depicted in

Fig. 8. Since the data available in the literature were

used for the verification of the model, the obtained re-

sults compared with previous works are presented in

Fig. 9. The results appeared to be sensitive to the up-

winding parameter a, which has been adjusted by a trial-

and-error method. A modification of the upwinding

techniques together with corrected conductivity prop-

erty is expected to give even better agreement with the

experimental data.

4.4. Test 4. The solidification problem of the aluminium

alloy

Im et al. in their paper [10] specified the problem,

although the authors did not present the experimental

results. The only verification can be made on the basis of
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the numerical results qualitative comparison. The con-

tent of aluminium alloy is not precisely defined in their

paper. The test however has been used here for simula-

tion of the phase change phenomena occurring in a

range of temperatures. As in the case of pure gallium the

mechanism was driven by the natural convection. The

square cavity of the main dimensions of 0.05· 0.05 m

extended again to third dimension was used as the

computational domain and is shown in Fig. 10 together

with initial and boundary conditions. The solidification

was realized by fixing the temperature of 500 �C to the

left wall of the cavity, while the other walls were insu-

lated, except the right one, which was maintained at 700

�C throughout the whole experiment. The mesh was

regular consisting of the 10500 elements with total

number of nodes equal to 2808. The time step was set to

0.2. The velocity field and the temperature profile at a

selected instant 30 seconds (as used in the literature) are

presented in the Fig. 11. In the second plot the isotherms

corresponding to the solidus )550 �C and liquidus )650
�C temperatures can be seen. The flow patterns as well as

the temperature field is consistent with the physics and

compares very well to the literature data.

4.5. Test 5. A complex simulation test concerning the

thixoforming technology of the aluminium alloy

In order to validate the model in terms of assessing

the operating conditions for the thixoforming process in

a more complex geometry, a real die was analysed. The

original element––a bracket of a car engine support
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produced by Polish WSK PZL-Rzesz�oow S.A. factory

was chosen for verification. This element was made of

aluminium alloy AlSi7Mg (AK7 according to the Polish

norm) normally made with the use of a gravity mould.

The initial temperature of the alloy used with gravita-

tional process was 700 �C. For the thixoforming simu-

lation the initial temperature was set to 600 �C. The

temperature equal 255 �C and velocity u ¼ 0 were set on

all external surfaces, except inlet surface where the

velocity of 5 m/s was imposed, as the boundary condi-

tions.

The mesh was prepared using the commercial soft-

ware ANSYS� and then transformed via a specially

written interface to the format acceptable by the own

simulation software. Its schematic picture is presented in

the Fig. 12 with indicating the inlet and outlet points and

the positions of thermocouples. The mesh consisted of

tetrahedral elements, with the total number of nodes and

elements equal 6637 and 24887, respectively.

Simulations of a hypothetical transient thixoforming

process were done using the own simulation software in

time stepping algorithm outlined before. All three

velocity fields, the bulk one and for both individual

phases were simulated, simultaneously with tempera-

ture, enthalpy, and solid fraction fields according to the

algorithm described above. Total CPU time consump-

tion was 6 h on Intel Xeon 2.4 GHz. The simulation

results were exported to the commercial software
FEMGV� via another interface program for the pur-

pose of visualization.

Fig. 13 shows the simulated bulk velocity field while

Fig. 14–the simulated pressure field. The maximum

calculated pressure value was 0.3E8Pa (not readable

direcly from the Fig. 14 because of non-uniform scale

used for visualization). Thus the required press recom-

mended for use in an adequate operation should have

power sufficient to produce at least 300 MPa. For

comparison, analogical simulated pressure field for the

gravitational moulding counterpart is presented in Fig.

15 reflecting well the hydrostatic pressure. Then, Fig. 16

shows different stages of thixoforming in terms of free

surface progress and the correspondent solid fraction

field evolution. The contours were obtained in cross-

section area as specified in Fig. 12. A good thixoform-

ability is predicted, providing the proper equipment is

available. Fig. 17 presents the comparison of tempera-

ture at the thermocouples positions measured vs. simu-



Fig. 12. The computational mesh for the test concerning a car engine support: (a) thermocouples positions, (b) the position corre-

sponding to the cross-sectional area used in Fig. 16.

Fig. 13. Simulated bulk velocity field for thixoforming process in the complex geometry.
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lated (two first locations were omitted since they were

inconsistent with imposed boundary conditions for the

purpose of simulation). Although the values were mostly

determined by the boundary conditions, nevertheless

good agreement can be observed.
5. Conclusions

The mathematical model represents a unified uni-

versal approach to thermodynamical description of

metal alloys processing including the semi-solid state as



Fig. 14. Simulated pressure field for thixoforming process in the complex geometry.

Fig. 15. Simulated pressure field for gravitational process in the complex geometry.
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encountered in the thixoforning technology. First of all,

two-phase approach to flow description of metal alloys

in the semi-solid state is fully adopted, allowing for

simulation of the phase segregation being a character-

istic feature and a real problem in thixoforming pro-
cesses. The interface drag force is modelled consistently

using ether Carman–Kozeny or Stokes law, depending

on the local value of solid fraction allowing for a broad

range of solid fraction conditions. Secondly, the time-

dependent phenomena like thixotropy resulting from
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agglomeration phenomena occurring naturally in glob-

ular structure of the alloy are reflected in the model.

Then, the non-isothermal phase change is described in

terms of temperature–enthalpy–solid fraction relation-

ships simultaneously, resulting in an efficient algorithm

for calculation of the corresponding fields evolution in

time on the domain. Particularly, this includes the

phase-change front tracking in arbitrary 3-D flow con-

ditions on a fixed mesh.

The numerical algorithm is free of time-consuming

iterations for mutual adjustment of the temperature–

enthalpy relationships, thus is suitable for 3-D simula-

tions using even an ordinary PC. Moreover, owing to

better numerical stability, the time step for the new

method could be increased without a risk of missing the

phase-change front.
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